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An overview of backgrounds & systematic effects;

concentrating on interaction cross-section measurements

Rough Outline 

a.) detector configuration

b.)sources of systematic uncertainty

b1.) flux

b2.) x-sections

b3.) reconstruction

c.) MiniBooNE measurement 

d.) future
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What constitutes an “event” in M’BooNE

The ~1 GeV beam at M’BooNE results in interactions that are 
relatively low in outgoing multiplicity.

The largest interaction channel is the l CCQE process l +n -> l + p, which 
accounts for ~40% of all the interactions in the M’BooNE detector.

Since the recoil proton is typically below  threshold, only the outgoing
lepton, or 0 for NC interactions, produces significant light.  

While the recoiling nucleon can produce significant scintillation light,
this additional source of light is not considered in the reconstruction.
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What constitutes an “event” in M’BooNE

If we define a “hit” as a PMT with a signal above threshold, then 
we eliminate many backgrounds with a simple set of cuts.
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What constitutes an “event” in M’BooNE

An event display: 
• each bubble represents a PMT “hit”;
• charge -> bubble size;
• time -> color; 

•range is early; 
blue comes later.

time cluster

event 1ST

subevent

2nd 
subevent

ee         

e

• PMT hits separated into time clusters

• Reconstruct Cherenkov rings and arrange in time.
CCQE events must contain 1 & only 1 subevent.

146,070 CCQE events with 5.58 X 1020 POT 
efficiency  = 27%
purity = 77 %
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Understanding the detector: response of the oil to 
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Understanding the detector: Energy dependence
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Understanding the detector: Flux uncertainties – particle production
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Predictions from the NUANCE event generator for fractional
occurrence of interactions in neutrino mode. Resonant
and coherent processes are included.
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Understanding the detector: cross-sections – NUANCE
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In the track based reconstruction, four signal 
patterns are used:
1. single electron track,
2. single muon track, 
3. two tracks,
4. and two tracks with a 0 invariant mass.

The CH2 has and extinction length of ~20m,
the radiation length is ~50cm, and exhibits a wide 
range of optical phenomena near the peak of the 
PMT sensitivity: 400 nm.
Cherenkov light and scintillation light are accompanied by
1. photon absorption;
2. fluorescence; ( with several excitation/emission spectra and lifetimes)
3. Rayleigh scattering;
4. and Raman scattering.

Also, photon reflection from the surface of the tubes, and the surface of the main
detector region must be considered in the simulations. 
The electronics dead time is ~ 300 ns.

A Geant3-based Monte Carlo simulation serves as the main tool for developing reconstruction
algorithm’s predictive models.

Understanding the detector: event reconstruction
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Understanding the detector: event reconstruction

The quantities measured by the detector are: 
the number of PMTs that have recorded a light pulse – “hits” –
the charge recorded on each PMT; and the time of the hit.

. E:energy kinetic The 
; , :direction  the

; t: timestarting The  
;z , y,x :point starting The  

:produced is
 , , variablesseven itha vector w
 ,quantities measured  theseFrom

0

00

0

000

x

In simulation, the flux, cross-section model (NUANCE), and detedtor
characteristics are combined to convert an event type as input to generation 
of a set of PMT hits with associated time and charge. The simulation 
and data are passed through the same reconstruction routines to 
generate x, which is used to test our ability to reproduced the data in 
simulation.
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MiniBooNE event reconstruction – particle identification:

The process leads to the development of negative log-likelihoods for each of the
fitted hypothesis. If Le, L , and L are the maximized likelihoods returned by
the electron, muon, and (fixed-mass) two-track fits, respectively, then the ratios

Re/ = log Le - log L and
Re/ = log Le - log L ,
can be used as a test of the electron hypothesis, compared to a or 0 .  

The events undergo pre-selection based on:
a. only one time cluster is present in the event, to eliminate Michel electrons from decay.
b. more than 200 hits in the main detector, to eliminate cosmic rays,
c. less than 6 hits in the veto region also to eliminate cosmic rays.

d. the event must also occur in the Booster beam window.
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cross sections: Llewellyn Smith 
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Results: cross sections in NUANCE

CCQE measurements 
(not M’BooNE )on a variety 
of targets compared to the 
Llewellyn Smith prediction 
from NUANCE with 
Mv = 0.84 GeV, MA = 1.0 GeV, 
and gA =-1.26(solid). 
Also shown is prediction on 
carbon from another model –
the Smith-Moniz relativistic 
Fermi gas model.
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cross-sections: Pauli suppression

In the RFG model, “Pauli-blocking” causes
a suppression in the cross-section for low
values of the momentum transfer, Q2. 

The struck nucleon is forbidden from 
entering a state already occupied by one
of the spectator nucleons in the 
interaction. In the previous slide, the
CCQE  prediction on neutrons bound in
carbon using this model. is a measure of
the Pauli-blocking, and is normally set to 1.

To get out of the nucleus, the final state 
lepton must have p > pF
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errors. shape therepresent  bandslighter 
  theand  values,measuredreresent  barsDark 
 process. CCQE  for the neutron per target

  section cross aldifferenti double integratedFlux  

Results: cross sections:

Provide differential cross-sections , correctly normalized with a predicted flux
(not normalized to a different reaction channel in the same data. 
Based on the world’s largest sample of CCQE events(~150,000) @ 1 GeV region. 
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Results: cross sections
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The excess over predicted background for 

E QE <475 MeV cannot be explained as an oscillation 

signal. It’s origin is not understood, 

2 independent blind analyses were performed:
Track Based Analysis (TBA); Boosted Decision Tree (BDT)

Prior to box-opening, the collaboration decided to present TBA,
which had somewhat better sensitivity. BDT analysis was used

as a confirmation of the TBA.
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Results: neutrino oscillation
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The future:

Short baseline experiment concentrate, to some extent
on searching for signs of non-interacting, or sterile neutrinos.

Many models have been proposed that profess the possible 
existence of this exotic form of matter.  

For example, the possible existence of a V+A world concurrent with
ours, but not interacting because of the inverse chirality*.

More sensitive experiments, that extend current measurements to
smaller values of sin2(2 ), may be the only method by which we
can probe this otherwise invisible world.  

* See for example, Introduction to Sterile Neutrinos,
Raymond R. Volkas – hep-ph/0111326 – 26 Nov 2001

soredake
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Backup slides
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appearance appearance 
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The analysis was performed with the same tools as the TBA analysis, and 
the addition of a minimum likelihood fitting process. The Boosted 
Decision Tree (BDT) analysis is still being pursued for the anti-neutrino 
data.
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Processes available in NUANCE: Particle lifetimes & producing decay 
modes with their branching rations 

Understanding the detector: cross-sections – NUANCE
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appearance /

MiniBooNE 90% CL limit (dark solid curve)
compared to KARMEN and Bugey 
experiments.

MiniBooNE 90% and 99% CL 
allowed regions 
compared to KARMEN and Bugey 
experiments.
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Savannah River Neutrino Detector, circa 1955
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Cherenkov Emission Profiles
generated in simulation.

Scintillation Emission Profiles
generated in simulation.

NC 0NC 0

To these we must add the 
effects of indirect light from 
scattering, fluorescence, etc.

MiniBooNE Sources of systematic uncertainties:  charge likelihood
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Distribution of corrected time for direct light, 
can be fit a with Gaussian mean and width.

For 300 MeV muons, the mean and width 
parameters from fits like those above vs.
direct Cherenkov predicted charge.

Parameterized tc likelihood distributions
as a function of predicted charge. 

Scintillation light
E0 = 1500 MeV

Cherenkov light

Internal fit parameters for (a) a single track
and (b) two photon tracks. Each photon track
contains a conversion distance parameter s.

MiniBooNE event reconstruction – time likelihood:

Using the known optical photon and Particle optical properties of the 
detector, one determines for a given particle type (e/ ) and a set of 
track  parameters, the average number of pe’s that a particular PMT 
should observe. This quantity is  referred to as the predicted charge.
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Birk’s Law
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The smallness of the neutrino mass may be the result of mixing between Dirac and Majorana mass terms in the 

Electroweak Lagrangian.  If we assume no Majorana neutrinos, the Lagrangian takes the form:

This is basically a talk about sterile neutrinos:

Let’s look first at the See-Saw mechanism
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When we diagonalize the mass matrix we get a see-saw configuration:

.ph/0302238-hep Laveder and Giunti
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Example: Sterile neutrinos can enter SUSY models through

the See-Saw mechanism

Takahashi and Tanimototo [arXiv:07040186]

The authors developed a model using the mass varying neutrinos of Fardon, Nelson & Weinner, 

JCAP, 0410, 005 (2004), in which the left handed Majorana is also massive, and a  sterile neutrino plays a part. 

The authors assume a chiral super-field, A, in dark matter. The superfield A couples to both the left-handed lepton 

doublet super-field L, and the right-handed neutrino super-field R. The authors introduce a scalar potential of the form:
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is a coupling constant

MA , MD , MR , and mD are mass parameters

The scalar and spinor component of A are and n.

The scalar component corresponds to the acceleron

causing the present cosmic acceleration. 

The spinor component n is a sterile neutrino.
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data. production fit to by the determined parameters are c
and proton,incident   theof momentum  theis p

muon,  theof momentum  total theis p

section, cross aldifferenti double  theis  where
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Understanding the detector: Sanford-Wang formula
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Results: cross sections:

ion.reinteract-hadronicfor 
corrected beennot  havedata  The .simulation  withcompared

ies,uncertaint systmatic and lstatistica both including ,CH on
ratio section-cross like-like/CCQE-CC1 Observed

2

ratio CCQE/CC
ratio CCQE/CC 0


